Exploration Spaceflight; Health in Space needs for Health on Earth benefit

Simon Evetts, PhD MD, SeaSpace Research Space Operations Director, Blue Abyss Director Human Spaceflight Capitalisation Office

Simon Evetts

Soldier

Sports Scientist

Space life scientist

European Astronaut Centre

sa

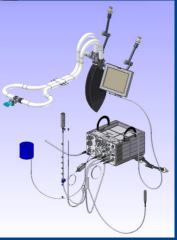
Blue Abyss, SeaSpace, Human Spaceflight Office

UK Space Environments Association

HUSC

Human Spaceflight Capitalisation Office

www.community.space-environments.co.uk


/ Government Astronaut Health Support Today

Space Agency 'medical support'

- Medical Operations Teams
- Space Life Science R&D
- Mission Operations Teams

European Astronaut Centre

Space Medicine Office Head: Dr Guillaume Weerts

The Space Medicine Office comprises space medicine experts from a variety of health related fields whose task is to **ensure the physical and mental health of ESA astronauts** to help them be productive and thrive in the harsh environment of space.

3 Units

Medical Operations Tasks

- **Prevention**: Ensure that astronauts remain fit & healthy even when not assigned to a mission.
- **Certification**: Annual medical exams for astronauts to obtain the flight certification required to remain eligible for mission assignment.
- Health monitoring and management: Personal physician for each astronaut from mission assignment to after post-flight rehabilitation.

Astronaut Selection

Annual Medical Certification

Pre-Mission Assessment

In-Flight Monitoring

Post-Flight Rehabilitation

Continuous Health Monitoring

Operational Space Medicine Unit

Five/six physicians (Flight Surgeons) supported by a 'Flight Nurse' responsible for ESA astronaut health.

Pre-Flight Activities

- Astronauts' mission medical certification in collaboration with clinical and environmental specialists.
- FS joins astronauts in the two-week preflight quarantine, providing healthcare until launch.

In-Flight Activities

- **Monitor** crew health and performance
- Ensure balanced work/rest schedules
- Sleep and exercise regimens
- Weekly Private Medical Conferences with the crew member

Operational Space Medicine Unit

Post-Flight Activities

- Provide primary care to the crew member **on landing** the space vehicle through to completion of r**ehabilitation**.
- Overall coordination of the rehabilitation team and specialist clinical treatments/assessments until pre-flight health status has been established.

Engineering and Operations Support Unit

The team of ESA Biomedical Engineers (BME) are integrated in to the **global ISS control centre network**. They represent **ESA Medical Operations on console** during ISS real-time operations and act as **eyes and ears of the Flight Surgeons**.

BME Real Time Operations Activities

- Point of contact for medical related **questions** and information affecting ESA crew
- Plan and implement a coherent mission tailored to each ESA crew member
- Monitor ISS environmental parameters and mitigation steps
- Inform ESA Flight Surgeon about off-nominal situations with (potential) medical impact
- Coordination of regular crew video/audio conversation to family, doctor, psychologist, and exercise specialist

Medical Projects and Technology Unit

Medical Projects

- Managing ESA Astronaut health related hardware projects (e.g. health assessment devices, exercise devices)
- Liaising with the Life Science domain

Exercise and Countermeasures

- Pre-, in- and post-mission exercise and countermeasures support
- Monitoring of fitness level and prescription of training regime
- Annual astronaut fitness assessment and performance analysis

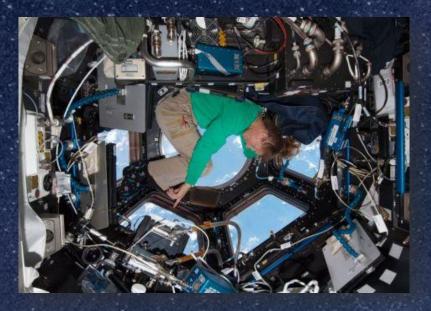
Medical Projects and Technology Unit

Information Technology

- Providing and maintaining the SMO IT requirements
- Providing a central internet platform for collaboration with international partners
- Developing tools for effective information exchange

Medical Education

- Coordinating the continuing education and certification of the Space Medicine Office staff
- Managing the provision of space medicine expertise to education programmes eg Kings Space Health MSc
- Managing internship programme for university and school students



Constraints of the space environment

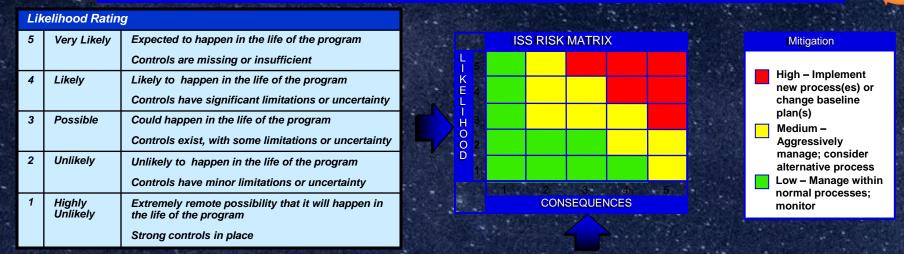
The constraints upon R&D, operations, equipment and procedures = cost of getting in to space + extreme environment

- 1. Equipment and apparatus must have a small mass, volume and footprint.
- 2. Consumables must have long shelf lives.
- 3. Hardware must have low power consumption.
- 4. Hardware requires low and simple maintenance requirements.
- 5. Procedures must be simple so as to take the minimum amount of time.
- 6. Hardware must be durable and robust.
- 7. Everything must work in a microgravity and high radiation environment.

In no other sphere of civilian human endeavour are restrictions as severe as those encountered in space.

The coupling of 'need and constraint' drives innovation!

Challenges of deep space exploration


Distance
 Isolation & confinement
 Poor access to;

- Expertise
- Supplies
- Equipment/facilities
- 4. Deconditioning?5. Danger?

ISS PROGRAM RISK SUMMARY CARD

Consequence Rating	1	2	3	4	5
<i>Mission Success / Operational Performance</i>	Minor or no impact to mission objectives Nominal Execution of Mission Minor reduction in performance Minor or no impact to design or operating margins	Failure to meet any single mission objective Operating in a degraded state Moderate reduction in performance Can handle within design or operating margins Damage to non-critical system, element, ground facility, function, or emergency system	Significant impact to mission objectives Operational Workarounds available Significant reduction in performance Significant loss of design or operating margin Loss of any non-critical system, element, ground facility, or function Loss of emergency system	Loss of multiple mission objectives Major increase in operations timelineor s complexity Major degradation in performance Loss of all design or operating margin Damage to critical system, element, ground facility, or function Planned De-Crewing	Loss of entire mission No alternatives exist Loss of ISS or any critical system, element, major ground facility or function ISS in a condition which prevents rendezvous/docking operations Emergency Evacuation
Safety	No injury	Minor injury, minor illness	Significant or long-term injury, illness, impairment Non-disabling injury	Permanent injury, impairment or incapacitation	Loss of Life Disabling injury
Cost - Score by cost of mitigating risk	<i>Minimal impact (<\$100K) or 0 to 2.5% increase</i>	Moderate impact (\$100K up to \$1M) or 2.5% to 5% increase	Significant impact (\$1M up to \$10M) or 5% to 7.5% increase	Major impact (\$10M up to \$50M) Or 7.5% to 10% increase	Major impact (> \$50M) Or >10% increase
Schedule	Minor or no impact	Can handle with schedule reserve, no impact to key project milestone or critical path	Project milestone slip No impact to Program critical path	Impact to Program milestone and/or Program critical path	Cannot meet program critical path milestone(s)

Exploration Mission Impact on Healthcare Provision

Healthcare Innovation for Space Exploration

Needs

- Maintenance of physician's skills over long periods
- Redundancy of medical skill sets
- Autonomous capability within team
- Robustness and resilience of capabilities and healthcare provision
 - In-house manufacturing and repair
 - Smart and expansive knowledge database
- Functional (personalised) healthcare

Prevention and preparation ...

needs require innovation!

Human Spaceflight healthcare innovation example

Historic – Skylab medical need.

- Inflight Medical Support System ability to deal with the injuries/illnesses most likely to occur in Skylab.
- Including the capability to take blood samples for routine monitoring and scientific investigation for 3 crew over weeks/months.

Many 60 ml samples needed - could not be returned immediately to Earth – high constraints on storage and return.

The need existed for the quantity of blood taken for each sample to be reduced by an order of magnitude!

/ Human Spaceflight healthcare innovation example

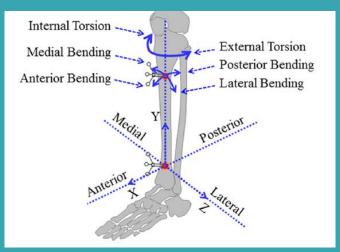
Historic – Skylab medical need.

R&D effort lead to 6 ml samples being possible

Neither the 'need' nor the 'constraints' existed on the ground!
 But terrestrial medicine gained significant benefit due to this coupling of factors in space.

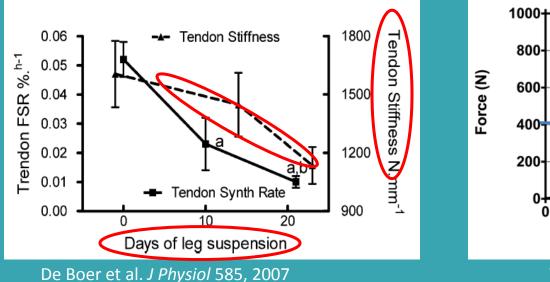
/ Space and terrestrial <u>deconditioning</u>

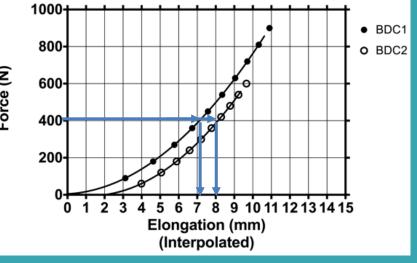
'Space' de-conditioning of the body = Parallels with ageing!



Current HSF Healthcare R&D Examples Bone stimulation – not just direct loading

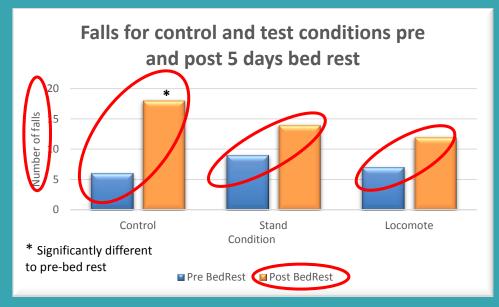
 Yang et al through in vivo force measurement during locomotor activities were able to note the significance of torsion and bending as bone stimuli.


- Thus we should shift our focus from simple loading magnitude to loading patterns in bone mechano-biology.
- The 'form' of exercise is as important as the 'fact' of exercise!



Muscle and Tendon deconditioning

- Time in space (or analogue simulation) leads to muscle atrophy and muscle fibre shortening.
 Narici et al, 2002, Journal of Gravitational Physiology 9, 137P-138P.
- **90 d bed rest = increased tendon compliance** Reeves et al, 2005, J Appl Phys 98, 2278-2286.



Tendon Elongation, Narici M

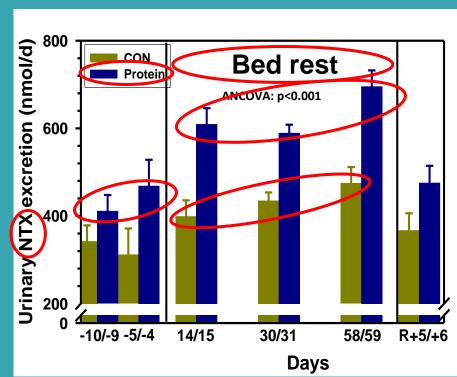
• Changes in muscle/tendon morphology will effect transmission of force.

Postural instability occurs after periods of bed rest.

- Postural instability occurs after periods of inactivity (bed rest).
- LeBlanc et al, 1997, Int J Sports Med;18 (Suppl 4):S283–5.
- Adoption of short periods of standing or simple locomotion type activity during periods of bed rest reduce postural instability when normal ambulation is resumed.
- Mulder et al, 2014, J Musculoskelet Interact, 14(3):359-366

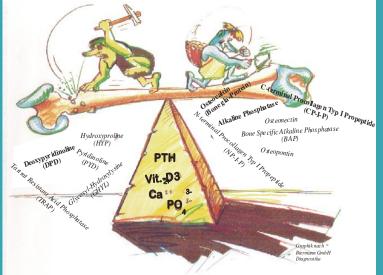
Falls due to postural perturbations (dynamic posturography) pre and post bed rest.

Mulder et al, J Musculoskelet Neuronal Interact 2014; 14(3): 359-366


Nutrition affects muscle and bone metabolism

 High protein intake during inactivity associated with increased bone resorption

Smith et al, 2003, J Bone Miner Res, 18:2223-30



Increased NTX (bone resorption marker) with high protein diet in bed rest. Heer et al, 2013, FASEB J; 27:615.15.

High protein intake can exacerbate bone resorption

- Need exists for high protein intake to counter muscle loss during inactivity.
 Kirk et al, 2010, Clin Nutr Metab Care, 13(1); 34-39
- Findings indicate that we can counter bone resorbing effect of high dose protein during inactivity with alkaline salt suplementation Heer et al, 2013, FASEB J; 27:615.15.
- Potential for high protein + alkaline supplements to aid muscle and bone maintenance during inactivity.

So to avoid deconditioning...

- Appropriate 'form' of exercise to optimise bone & muscle retention.
- We need to find ways to avoid changes in muscle and tendon compliance which affect transmission of forces to the bones.
- Impose 'Gz stimulus' to minimise postural instability.
- **Provide appropriate nutrition** for optimal bone and muscle maintenance during inactivity/best rest.
- This knowledge clearly translates to terrestrial healthcare benefit in an <u>ageing society</u> – nutrition, muscle, bone, balance.

Preparing to meet tomorrow's Needs

- The R&D we do today must lead to innovation we can use tomorrow.
 ...if we are to explore our solar system safely.
- We will need to be able to;
 - Maintain difficult to acquire skill sets
 - Conduct critical healthcare practices autonomously
 - o Be self-sufficient and resilient
 - Access intelligent and expansive healthcare information databases

Space to Earth

- Many of the products, capabilities

 and much of the knowledge required
 for space exploration will directly
 translate to the needs of an ageing
 society.
 - Preventative medicine
 - Improve understanding of deconditioning and its prevention
 - Remote healthcare
 - Autonomous health monitoring and reporting
 - Robust and resilient biotechnology for use in the community

The New Space Age and the Age of Ageing

- A new age approaches for developed societies; one in which the percentage of the population considered elderly far exceeds that of today.
- But developed societies will not stop expanding the boundaries of our physical world and consequently space exploration will grow.

So we must -

- Embrace the constraints of space exploration to enable innovation that would otherwise not happen.
- Harness the budgets and effort expended by the space medicine R&D to address the needs of exploring the solar system.
- Collaborate to improve terrestrial healthcare AND enable space medicine.

New Space can help Old Age

Thank you!

www.community.space-environments.co.uk

Blue Abyss

FLY HIGH, DIVE DEEP

www.blueabyss.uk